Brain functional connectivity network breakdown and restoration in blindness.

نویسندگان

  • Michał Bola
  • Carolin Gall
  • Christian Moewes
  • Anton Fedorov
  • Hermann Hinrichs
  • Bernhard A Sabel
چکیده

OBJECTIVE To characterize brain functional connectivity in subjects with prechiasmatic visual system damage and relate functional connectivity features to extent of vision loss. METHODS In this case-control study, resting-state, eyes-closed EEG activity was recorded in patients with partial optic nerve damage (n = 15) and uninjured controls (n = 13). We analyzed power density and functional connectivity (coherence, Granger causality), the latter as (1) between-areal coupling strength and (2) individually thresholded binary graphs. Functional connectivity was then modulated by noninvasive repetitive transorbital alternating current stimulation (rtACS; 10 days, 40 minutes daily; n = 7; sham, n = 8) to study how this would affect connectivity networks and perception. RESULTS Patients exhibited lower spectral power (p = 0.005), decreased short- (p = 0.015) and long-range (p = 0.033) coherence, and less densely clustered coherence networks (p = 0.025) in the high-alpha frequency band (11-13 Hz). rtACS strengthened short- (p = 0.003) and long-range (p = 0.032) alpha coherence and this was correlated with improved detection abilities (r = 0.57, p = 0.035) and processing speed (r = 0.56, p = 0.049), respectively. CONCLUSION Vision loss in the blind is caused not only by primary tissue damage but also by a breakdown of synchronization in brain networks. Because visual field improvements are associated with resynchronization of alpha band coherence, brain connectivity is a key component in partial blindness and in restoration of vision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Tinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity

Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...

متن کامل

ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS

 Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurology

دوره 83 6  شماره 

صفحات  -

تاریخ انتشار 2014